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The problem of diffusion in a bistable potential is studied by considering the 
associated nonlinear Langevin equation and its equivalent Fokker-Planck equa- 
tion. Two numerically exact methods of solution, namely, the Monte Carlo 
solution of the nonlinear Langevin equation and the solution of the Fokker- 
Planck equation via the finite difference technique, are considered. The latter 
method has the advantage that it directly gives the evolution of the probability 
distribution function. Approximate analyses of the fluctuations using the system 
size expansion, the Gaussian decoupling procedure, and the scaling approach 
are also carried out. These investigations are performed on a representative 
problem for two specific cases: (1) evolution from intrinsically unstable states 
and (2) evolution from extensive regime. The fluctuations obtained using these 
approximate methods are compared with those obtained via the numerically 
exact methods. The study brings out the advantages and limitations of each of 
the methods considered. 

KEY WORDS: Diffusion in bistable potential; numerical solution of the 
nonlinear F.P. Equation; scaling theory; generalized statistical lineariza- 
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1. I N T R O D U C T I O N  

F l u c t u a t i o n s  in n o n l i n e a r  sys tems  h a v e  b e e n  r ece iv ing  c o n s i d e r a b l e  a t t en-  

t ion  in r ecen t  years .  I n  the  " e q u a t i o n  of  m o t i o n "  a p p r o a c h  the  ana lys i s  is 

ca r r i ed  o u t  by  c o n s i d e r i n g  a n o n l i n e a r  L a n g e v i n  e q u a t i o n  o r  its e q u i v a l e n t  

F o k k e r - P l a n c k  e q u a t i o n .  E x a c t  c l o s e d - f o r m  so lu t ions  for  these  e q u a t i o n s  
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are rarely possible. (~ However, exact numerical integration of these equa- 
tions is fairly straightforward. For example, the Monte Carlo solution of the 
nonlinear Langevin equation can be employed for extracting the moments 
of the stochastic process. Alternatively, the exact numerical solution of the 
Fokker-Planck equation can be obtained via the finite difference scheme. 
The latter method has the added advantage of yielding the probability 
distribution function. 

On the other hand, approximate methods exist, some of which are 
analytical in nature (2-5~ and others have numerical bias. (6-9) It is obvious 
that each of these would have its own advantages and limitations. Analyti- 
cal methods permit insight into the nature of fluctuations, but by their very 
nature are limited to simple situations only (e.g., single-variable case). On 
the other hand, the methods with numerical bias can be used even in 
complicated situations (e.g., higher dimension, arbitrary nonlinearity, etc.). 
However, the nature of approximations is such that these methods are not 
uniformly applicable. Thus we find a need for a comparative study of the 
different methods of analysis of fluctuations in nonlinear systems. The hope 
of this study is that it would enable us to identify some approximate 
methods which can be employed in the analysis of complicated situations. 

The comparative study is carried out with respect to a particular 
model, namely, diffusion in a bistable potential. (l~ This problem has been 
an object of much investigation. (2'll) The diffusion can be either from an 
apparently unstable state (extensive regime) to a stable steady state, or from 
an intrinsically unstable state to two stable steady states. In the first case, 
where a single steady state is preferred, the system size expansion (5~ and the 
recent linearization schemes (v-9~ are expected to give reasonably good 
results. 

The evolution from an intrinsically unstable state is a difficult prob- 
lem (2-4'11-15) and has been studied in detail. The system size expansion is 
not applicable in this case. 3 But, the Gaussian decoupling scheme (8) can be 
used if one takes care of the fact that two steady states are allowed. 

The approximate methods considered for intercomparison are (a) the 
scaling theory, (2-4) (b) system size expansion,(5)and (c) the generalized 
statistical linearization scheme. (7-9) The Monte Carlo solution of the non- 
linear Langevin equation and the numerical solution o f  the Fokker-Planck 
equation are also considered. The Monte Carlo solution is taken as the 
reference against which other methods are compared. 

3 It is possible to employ system size expansion for this case also using Dekker's method. (14) 
He splits the problem into an irreducible part (which essentially preserves the multimodal 
character of the distribution function) and a corrective remainder. 



Diffusion in a Bistable Potential 183 

The paper is organized as follows. In Section 2, we describe the model 
representing the diffusion in a bistable potential, the corresponding nonlin- 
ear Langevin equation, and its equivalent Fokker-Planck equation. In 
Section 3 we describe various methods of solutions considered. Section 4 
discusses the relative performance of these methods. The principal conclu- 
sions are summarized in Section 5. 

2. A MODEL FOR DIFFUSION IN A BISTABLE POTENTIAL 

One of the models for diffusion in a bistable potential is represented 
by the nonlinear Langevin equation (NLE) 

d --d~ X = yx  - gx 3 + 71(t) (1) 

where x ( t )  is the driven random variable, , / is a positive friction coefficient, 
and g is the parameter of nonlinearity (taken to be positive for the global 
stability of the solution). The driving random force B(t) is assumed to be a 
Gaussian white noise obeying 

( r / ( t ) )  = 0 and (~l(t)Tl(t ')) = 2c6(t - t') (2) 

where e is the diffusion coefficient. The equivalent Fokker-Planck equation 
(FPE) for the distribution function P(x ,  t) is 

_ i  0 2  
[(]IX -- gx3)e(x , t )  ] "Jr- E - -  e (x , [ )  (3)  ~ P ( x ,  ~x Ox 2 t) 

The potential considered permits three extrema for x (=  Xe) out of which 
x e = 0 corresponds to an unstable steady state and x e = + ( 7 / g )  ~/2 corre- 
spond to the stable steady states. 

The evolution of x ( t )  [and hence of P(x ,  t)] depends crucially on the 
choice of initial conditions. (2) Let the initial distribution function be a 
Gaussian characterized by the mean and the variance of 6 and o~, respec- 
tively. The initial variance a02 is expected to be less than or of the order of E 
in most physical situations. We will be studying the nature of fluctuations 
as a function of 6. Typically two types of fluctuations arise (as a function of 
6). The case 62>> e is referred to as the extensive regime. (2) This corre- 
sponds to passage from an apparently unstable state to a preferred stable 
state. Subsequent slow time evolution due to Kramers diffusion (~~ will not 
be considered here. The more interesting case corresponds to 6 2 <( C, which 
is referred to as the intrinsically unstable region. This corresponds to 
evolution from an intrinsically unstable state to the two steady states. 
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3. DIFFERENT METHODS OF SOLUTION 

Of the several methods of solution studied here, the first two are exact 
numerical methods, the next two are Gaussian representations of the actual 
distribution function of x(t), and the last one is the scaling theory. 

3.1. Monte Carlo Solution 

A Monte Carlo solution of the nonlinear Langevin equation [see Eq. 
(1)] is carried out as follows. A random walk is started with its initial 
position X(to) sampled from a given initial distribution. Then Eq. (1) is 
numerically integrated using the standard Runge-Kut ta  Gill algorithm 
over a time interval At. The random noise ~/(t) is modeled to be rectangular 
pulses of arbitrary heights, but constant in a time interval ~-/> At. The 
heights are sampled from a Gaussian distribution function with a variance 
of 2c'r so that the normalization condition given by Eq. (2) is satisfied in the 
sense of an integral. The process is continued up to the desired final time t, 
thus completing one random walk. A large number of such random walks 
are generated and the required statistics are obtained by averaging over the 
ensemble thus produced. 

It should be clear from the preceding paragraph that the method is 
general. Stochastic processes involving more than one variable (higher 
dimension) could be easily handled. Whereas most of the other methods are 
restricted to the driving random force being a Gaussian white noise, the 
Monte Carlo solution does not have such limitations. ~/(t) could be sampled 
from any arbitrary distribution function desired and the entire analysis goes 
through. 

3.2. Numerical Solution of the Fokker-Planck Equation 

The numerical solution of the Fokker-Planck equation is obtained 
using finite difference techniques. (16) Natural boundary conditions P(x,  t) 
4 0  for x ~  • ~ are employed. A mesh structure is imposed on the 
variables x and t. The mesh widths Ax and At of the variables x and t, 
respectively, need to be chosen carefully, since the finite-difference approxi- 
mations are valid only in the limit of small Ax and At. 

Let j and k denote the indices of the x mesh and t mesh. The 
finite-difference equations (16) set up are 

aPj,k+l + bPj-l,k+l + cPj+,,k+l -- Pj,k = 0, j = 2 . . . . .  (N - 1) (4) 

Here k denotes the earlier time step and N represents the number of meshes 
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in the x domain. The coefficients a, b, and c are given by 

b =  2e + At (5) 
Ax 2 2~-x 

Ax 2 2 N x  At 

Given an initial distribution function at time t - -0 ,  these equations 
reduce to a tridiagonal set of equations involving Pj,~+l, Pj+l,k+l, and 
Pj-1,~+I. These equations are solved to obtain Pj,k+l f o r j  = 2 . . . . .  ( N -  
1). Now the entire solution P(x, t) is obtained in time steps of At. 

The choice of Ax is dictated by the accuracy with which P(x, t) is 
computed at any time t. It is essential that P(x, t) does not vary much over 
the mesh width, since the finite-difference approximation implies a constant 
interpolation of P(x, t) in the interval Ax. This in turn implies a small Ax, 
since the procedure becomes numerically unstable otherwise. 

For the problem considered, (x( t ))  ranges typically from - ( 7 / g )  1/2 
to (7/g) 1/2 with the variance in x(t) ranging from ~ e  to an order of unity. 
In the first case considered in Section 2 (i.e., passage from an extensive 
regime), the number of meshes and hence the time for computation can be 
enormously reduced (at least by a factor of 10) by continuously modifying 
the range in which x(t) is computed and the value of Ax, depending on the 
mean and variance of x(t). This procedure is, however, not applicable in 
the case of evolution from intrinsically unstable states. 

The method has the advantage of being a numerically exact procedure 
to obtain the entire distribution function P(x,t) in the complete time 
domain. No other approximation is involved, when reasonable mesh widths 
are chosen. Also, the generalization to higher dimensions is straightforward. 

3.3. System Size Expansion 

System size expansion (5) proceeds with the assumption that the sto- 
chastic process x(t) could be split into a mean path (deterministic path) 
y(t) and a corrective remainder ~-~(t). Then the distribution function for 
~(t) satisfies 

~r((, t) d~ = P(x, t) dx (6a) 



186 Indira et al. 

with 

x(t)  = y( t )  + ~ ( t )  (6b) 

Substituting the above expressions in Eq. (3) and equating coefficients of 
the same power of c, we get to the order of c: 

d gy3 --~ y = `/y - = C,(y) (7) 

(_`/+ 3 2) + (8) 
a82 

In Eq. (7), Cl(y ) is the first jump moment. The solution is given by 

~((, t) = [2~ro2(t) ] - ' /2exp 2aE(t) (9) 

where az(t) is the variance of (, obtained as the solution of the following 
equation: 

d a2(t) = 2 [ ( , / -  3gy2)o2(t) + 11 (10a) 
dt 

Alternatively, Ox 2 [the variance of x(t)] satisfies 

d 2 2[(`/ 3g, y 2 ) o 2 + e ]  (10b) 

An explicit solution of az(t) is given by 

. . . . .  ~ " J g(~Y- ~)~ / ~ / ~  2 o~(0_ ~ ( ~ y _  ~ 3 ) ~  + 31n - + - 
(`/yo-yo') 2 ~ [ ~  1-~-v)`/ 1-~2/`/ 

1 `/ ] Y(~ t 
+ 2(1 - gy2/`/) g, y2 Jyo ) 

(11) 
where the deterministic path y(t)  is given by 

Y(O = Yo Yo = y(O) (12) 
((g/` / )y~ + [ 1 -  (g/`/)y2]e-2Vt ) 1'2' 

t 
This method is applicable only in the first case (i.e., 62 >> e). In the second 
case of evolution from an intrinsically unstable state (i.e., 62<< e) the 
methods fails. This is because the fluctuations are no longer corrections to 
the deterministic part, but they completely determine the evolution itself 
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(i.e., the higher-order terms neglected are as important as 
tained.) 4 
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the terms re- 

3,4. Generalized Statistical Linearization Scheme 

The basic idea of this method is to replace the original nonlinear 
Langevin equation [Eq. (1)] by an equivalent linear equation(6-9): 

d --dT x = ~,(t)x(t) + C(t)  + •(t) (13) 

Having made such a replacement we cannot hope to reproduce all the 
non-Gaussian features associated with Eq. (1). However, with the leverage 
of two arbitrary functions "7(0 and C(t) available, we may at least obtain 
the first two moments of x(t)  in some optimal sense. This is achieved by 
demanding that the ensemble average of the error due to the replacement 
of Eq. (1) by Eq. (13) be a minimum. (6) This leads to some expressions for 
the optimal choice of '7(0 and C(t). We now derive equations for the 
evolution of ( x )  and ( x  2) starting from the equivalent linear equation [Eq. 
(13)]. Substituting for "7(0 and C(t) we get 

d d-t ( x )  = y ( x )  - g(x  3) (14) 

and 

d 2 ~ 7 ( x  ) = 217(x  2) - g(x4)  + e] (is) 

n It is to be noted that the above discussion pertains to the system size expansion applied to 
the "master equation" represented by the Fokker-Planck equation itself. Instead, we may 
consider Eq. (1), ";vithout the random force term T/(t), to be the macroscopic (average) 
equation corresponding to some microscopic process. The master equation satisfied by the 
distribution function can be written down in terms of the forward and backward transition 
rates. (5) Performing system size expansion on this master equation, we get 

(Yy gv 3 ) 
t )  = ( - .,,, + t ) l  + 

+ B2 
2 a~ 2 ff(~' t) ( 7 /  O g  

with 

a 
a--7 y = "/y - gy3 

The variance of x then satisfies 

27 ~ $ 

clearly 0 2 depends on the initial variance and initial value of y. For small values of e, this 
equation for O2x(t) will tend to Eq. (10b). 
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It should be pointed out that these equations are identical to the ones we 
would obtain starting from the original nonlinear Langevin equation itself. 
It should be mentioned that this result is general and is applicable for 
arbitrary dimensions and nonlinearities. (8) Since Eq. (13) is linear, its 
distribution function is Gaussian. Hence the best approximation is obtained 
by a Gaussian decoupling of the higher-order moments occurring in Eqs. 
(14) and (15). Obviously, the above equations are applicable only to the 
first case of diffusion from an extensive regime. Comparing with Eqs. (7) 
and (10b) obtained via system size expansion, we note that the two are 
similar in form, if we identify the right-hand side of Eq. (14) as a 
"renormalized" jump moment (after decoupling (x  3) and (x4)). 

The method fails in the second case (6 2 ((E). With an idea of respect- 
ing the symmetry of the final distribution function, we choose P(x, t) to be 
a bimodal Gaussian G(x, t) of the form 

G(x,t)=C{H(-x)exp[ (x+x')2]+H(x)exp[-(X-Xl)2]}2o 2 2o12 (16) 

where 

C = {(2"n')I/2o1[l-t-erf(xl/~/2Ol)l}-' 

Here H(x) is the step function. Since this distribution function is symmet- 
ric, all odd moments vanish. Hence, starting from Eq. (1), we can write 
down the evolution equations for the first two nonvanishing moments (x  2) 
and (x4). The higher-order moments occurring in these equations are 
decoupled using Eq. (16). The unknown functions x~ and o~ are then 
determined self-consistently. 

3.5. THE S C A L I N G  T H E O R Y  

Many authors (2-4'11-15) have studied the problem of evolution from an 
intrinsically unstable state. The method we discuss is due to Suzuki. (2) The 
idea is to go over to a transformed variable which approximately satisfies a 
linear equation. One of the many nonlinear transformations used is 

with 

4= F-I[e-YtF(x)I (17) 

Cl(y) = v y - g s  3 (18) 
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Then the Fokker-Planck equation for P(~, t) reads 

3-T P(~,t) = E C,(x) ~ C~(~) P(~'t) (19) 

In the limit of small e and large t, it is possible to show that 

C,@) -~, (20) 
Cl(X ) "~ e 

The resulting FPE can be easily solved. Transforming back to the original 
variable, we get for x (0) = 0, 

P(x,t) F ' ( x )  [ (~(x)eYt) 2 ] 
= exp - (21) (2~rr)'/2F,(~(x)) 2r 

where 

e (1 - e-2yt)]  "I"= e 2rt 0 2-1- -~ 

and 02 is the initial variance. [In the above the prime (') refers to differenti- 
ation with respect to the argument of the function.] 

As an improvement over the above-mentioned scaling theory, Suzuki 
has proposed the renormalized perturbation scheme. (17) In the infinite- 
order limit, this is expected to lead to the exact result. The scaling theory 
follows in the zeroth-order approximation. In the first-order perturbation 
theory, he obtains the system size expansion result for the extensive regime. 
We point out that there is a difference between them, namely, the initial 
fluctuations are not damped out in this perturbative approach. 

4. COMPARATIVE STUDY OF VARIOUS METHODS OF SOLUTION 

In this section, we will compare the relative performance of the 
different methods of solutions considered in the previous sections 

4.1. Passage from an Apparently Unstable State 

We choose the initial distribution function to be a Gaussian. We set 
8 = 5 X l0 -3, 02 = 1 X 10 -6, C = 0.5 X 10 -6 and " /=  g = 1. We have ob- 
tained P(x,t) from the numerical solution of FPE with Ax = 0.005 and 
At = 0.001. The non-Gaussian feature of P(x,t) is clearly seen in Fig. 1, 
which depicts P(x, t) for three typical times. The total computer time taken 
was about 5 rain in the Honeywell Bull DPS8 system. 

In the Monte Carlo method of solution, averages were obtained with 
an ensemble of 4900 tracks. This number of tracks was found to be 
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sufficient to obtain a good statistical estimate of the first and second 
moments. The computer time required was around 50 min. 

We shall now compare the first two moments obtained by various 
methods discussed in Section 3. We shall treat the solution obtained by 
Monte Carlo technique as the exact solution against which others are 
compared. We do not present here the results of the scaling theory because 
it has been demonstrated to be almost equivalent to the system size 
expansion, for the evolution from the extensive regime under consideration. 
We just remark in passing that the variance obtained by this method shows 
deviations at large times as a consequence of the initial fluctuations not 
being damped out (see also Section 3.5). Figure 2 shows a plot of (x(t)) as 
a function of time. All methods discussed compare well. Figure 3 shows a 
plot of the variance. All the methods show fluctuation enhancement char- 
acteristic of a nonlinear system. The variance obtained from the numerical 
solution of FPE compares extremely well with that obtained by the Monte 
Carlo method. Here it should be emphasized that the numerical solution of 
FPE is several times faster than the Monte Carlo method. The Gaussian 
decoupling scheme compares well but for a small discrepancy at the 
intermediate time. This is due to the severe non-Gaussian feature of the 
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Fig. 3. The variance of x(t) as a function of time for the problem considered in Fig. 1. 
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actual P(x, t), as can be seen in Fig. 1. The results of system size expansion 
are as good as the Gaussian decoupling scheme for the small value of c that 
is chosen. As discussed earlier, the success of these methods is due to the 
unimodal character of the distribution function. 5 

I t  is also clear that when the number  of variables (N)  is large and if we 
are interested in the first two moments  only, Monte Carlo method becomes 
more attractive. This is due to the fact that the computer time for numerical 
solution of FPE will increase as N 2 against the linear increase for the 
Monte Carlo method. 
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Fig. 4. The distribution funct ion P(x, t) obtained by the numerical  solution of the F o k k e r -  
Planck equation and from the scaling theory, for the case of evolution f rom an intrinsically 
unstable state with 3 = 0.0; ao 2 = 1 • 10 -6  and c = 0.5 • 10-6: 

5 A study of system size expansion applied to the deterministic equation discussed in footnote 
4 (Section 3.3), was also made. I t  was found that the result obtained for Ox2(t) differed by  a 
factor of 10 2, for a deterministic initial condition (i.e., oo 2 = 0). 
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4.2. Passage from an Intrinsically Unstable State 

When the system relaxes from an intrinsically unstable state, the 
evolution of fluctuations cannot be obtained by system size expansion, as 
discussed earlier. The Gaussian decoupling scheme works provided we 
assume an a priori bimodal Gaussian distribution function, for decoupling 
higher-order moments. Hence we have studied this case using methods 
other than system size expansion for an initial Gaussian distribution 
function with 3 = 0 and fro 2 = 1 x 10 -6. 

Figure 4 shows a plot of P(x,  t) obtained by the numerical solution of 
FPE with Ax = 0.00025 and At = 0.001. The results of scaling theory are 
also shown alongwith. The two match well for the time scales considered 
here. Monte Carlo solution of the nonlinear Langevin equation has been 
obtained with 4900 tracks. Figure 5 depicts the variance obtained by 
various methods as a function of time. The numerical solution of FPE 
compares extremely well with Monte Carlo solution. The scaling theory 
performs best amongst the approximate methods. As a matter of fact, the 
agreement is better when the initial condition is deterministic. The bimodal 
Gaussian decoupling compares reasonably well considering the fact that it 
is a very simple approximation to the actual non-Gaussian process. The 

1.0 

0.8 

0.6 

T O.Z, 

0.2 

O.C 

-- MONTE CARLO 

a SCALING 

�9 NUMERICAL SOLUT- 
:~ ]  ION OF ER EQUATION 
/ 4- BIMOOAL DECOUPLINC 

/ 
I L I 1 ~ I 

" TIME (sec) 
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deviation is maximum in the intermediate region. For these computations, 
the Monte Carlo method took 50 min compared to 60 min consumed by 
the numerical solution of the FPE. 

5. CONCLUSIONS 

In light of the present investigation the following picture emerges 
regarding the advantages and limitations of the methods considered. The 
numerical solution of the Fokker-Planck equation should be very useful in 
problems where analytical methods fail since it provides the entire distribu- 
tion function with minimal computer time. On the other hand in situations 
involving many variables the Monte Carlo method becomes attractive in 
getting exact values of first and second moments. The Monte Carlo method 
also seems to be the only one which can be used when the driving random 
force is not a Gaussian white noise. The Gaussian decoupling scheme, 
which earlier has been shown to be effective in higher dimensions, (8) after 
all performs reasonably well even in the case when multiple steady states 
are allowed. Suzuki's scaling theory performs remarkably well in unraveling 
the evolution from intrinsically unstable states. System size expansion is 
comparable to the Gaussian decoupling scheme for the extensive regime. 
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